

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

DotArray Change Log

1.1.0 March 02, 2019

	Remove DotArray::uniqueIdentifier

	Remove DotPathTrait - parts have been moved into DotArray

	Code Standard Improvements

	Refactoring DotArray:

	More Tests.

1.0.5 December 30, 2018

	Refactoring DotArray:

	Using a Trait (DotFilteringTrait) to split code in more organized units.

	Refactoring DotPathTrait::flatten

	using PHPStan.

	Updating composer.json scripts to use PHPStan.

	More Tests.

1.0.4 December 30, 2018

	Refactoring DotArray:

	Using a Trait (DotPathTrait) to split code in more organized units.

	Refactor DotArray::mergeRecursive :: less if ... else branches.

	Refactor DotArray::normalize :: now is recursive and if type of the entry is DotArray then is converted to array.

	Apply DotArray::normalize after every DotArray::write used when DotArray::set is called.

	Fix composer.json create-folders script :: in case of fail creating the build folder, exit with code 0.

	Updating README.md

	Updating Tests

1.0.3 December 28, 2018

	Update .gitattributes

1.0.2 December 28, 2018

	Update README.md

	Added the following scripts to composer.json:

	composer check (running phpcs & phpunit)

	composer generate-reports (running phpcs, phpmd, phpunit :: for generating internal reports)

1.0.1 December 26, 2018

	More Tests

	Fix DotArray::__invoke @return comment

1.0.0 December 26, 2018

	Initial release.

DotArray - Sail through array using the dot notation

~ Enjoy your :coffee: ~
Accessing PHP Arrays via DOT notation is easy as:

DotArray::create(['config' => ['some.dotted.key' => 'value']])->get('config.{some.dotted.key}')

[image: _images/php-%3E%3D%207.1-8892BF.svg]Minimum PHP Version PHP >= 7.1 [https://php.net]
[image: _images/dot-array.svg]Latest Stable Version [https://packagist.org/packages/binary-cube/dot-array]
[image: _images/dot-array1.svg]Total Downloads [https://packagist.org/packages/binary-cube/dot-array]
[image: _images/master.svg]Build Status [https://travis-ci.org/binary-cube/dot-array]
[image: _images/dot-array2.svg]Code Coverage [https://scrutinizer-ci.com/g/binary-cube/dot-array/code-structure]
[image: _images/dot-array3.svg]Quality Score [https://scrutinizer-ci.com/g/binary-cube/dot-array]
[image: _images/license-MIT-brightgreen.svg]License [https://github.com/binary-cube/dot-array/blob/master/LICENSE]

Installing

	via “composer require”:

composer require binary-cube/dot-array

	via composer (manually):

If you’re using Composer to manage dependencies, you can include the following
in your composer.json file:

{
 "require": {
 "binary-cube/dot-array": "1.*"
 }
}

Usage

REMEMBER: YOU NEED TO KNOW YOUR DATA

DotArray::get() can return a new instance of DotArray in case the accessed path is an array or it will return the raw data value or the default given value

	instantiation:

	new DotArray($array);
DotArray::create($array);
DotArray::createFromJson($jsonString);

	get:

	// Because the key `sci-fi & fantasy` is array the returning value it will be a new instance of DotArray.
$dot('books.{sci-fi & fantasy}');

// Because the price is not an array, the result will be raw data, float in this case.
$dot('books.{sci-fi & fantasy}.0.price');

// Accessing the raw array.
$dot('books.{sci-fi & fantasy}')->toArray();
$dot->get('books.{sci-fi & fantasy}')->toArray();

// Accessing the last leaf and getting the raw data.
$dot('books.{sci-fi & fantasy}.0.name');
$dot->get('books.{sci-fi & fantasy}.0.name');

// Giving a default value in case the requested key is not found.
$dot->get('key.not.exist', 'not-found-as-string');

// Vanilla PHP.
$dot('books.{sci-fi & fantasy}.0.name');
$dot['books']['sci-fi & fantasy'][0]['name'];

	get :: more-complex:

	// Using dotted key and accessing without getting confused.
// Allowed tokens for keeping the names with dot(.) togethers are: '', "", [], (), {}
$dot->get('config.{elastic-search}.\'v5.0\'.host')
$dot->get('config.{elastic-search}."v5.0".host')
$dot->get('config.{elastic-search}.[v5.0].host')
$dot->get('config.{elastic-search}.(v5.0).host')
$dot->get('config.{elastic-search}.{v5.0}.host')

	set:

	$dot->set('books.{sci-fi & fantasy}.0.name', 'New Name');

// Vanilla PHP.
$dot['books.{sci-fi & fantasy}.0.name'] = 'New Name';
$dot['books']['sci-fi & fantasy'][0]['name'] = 'New Name';

	clear (empty array <=> []):

Set the contents of a given key or keys to the given value (default is empty array).

	$dot->clear('books.{sci-fi & fantasy}');
$dot->clear('books.{sci-fi & fantasy}', null);
$dot->clear('books.{sci-fi & fantasy}.0.name', null);

// Multiple keys.
$dot->clear([
 'books.{sci-fi & fantasy}',
 'books.{children\'s books}'
]);

// Vanilla PHP.
$dot['books.{sci-fi & fantasy}'] = [];

	delete (unset(…)):

Delete the given key or keys.

	$dot->delete('books.{sci-fi & fantasy}');
$dot->delete('books.{sci-fi & fantasy}.0.name');
$dot->delete(['books.{sci-fi & fantasy}.0', 'books.{children\'s books}.0']);

	merge:

Merges one or more arrays into master recursively.

If each array has an element with the same string key value, the latter
will overwrite the former (different from array_merge_recursive).

Recursive merging will be conducted if both arrays have an element of array
type and are having the same key.

For integer-keyed elements, the elements from the latter array will
be appended to the former array.

	// Example 1.
$dot->merge(['key_1' => ['some_key' => 'some_value']]);

// Example 2.
$dot->merge(
 [
 'key_1' => ['some_key' => 'some_value'],
],
 [
 'key_2' => ['some_key' => 'some_value'],
],
 [
 'key_n' => ['some_key' => 'some_value']
],
);

	find:

Find the first item in an array that passes the truth test, otherwise return false.

The signature of the callable must be: function ($value, $key).

	$book = $dot->get('books.{children\'s books}')->find(function ($value, $key) {
 return $value['price'] > 0;
});

	filter:

Use a callable function to filter through items.

The signature of the callable must be: function ($value, $key)

	$books = $dot->get('books.{children\'s books}')->filter(function ($value, $key) {
 return $value['name'] === 'Harry Potter and the Order of the Phoenix';
});

$books->toArray();

	filterBy:

	/*
 Allowed comparison operators:
 - [=, ==, eq (equal)]
 - [===, i (identical)]
 - [!=, ne (not equal)]
 - [!==, ni (not identical)]
 - [<, lt (less than)]
 - [>, gr (greater than)]
 - [<=, lte (less than or equal to)]
 - [=>, gte (greater than or equal to)]
 - [in, contains]
 - [not-in, not-contains]
 - [between]
 - [not-between]
*/
// Example 1.
$books = $dot->get('books.{children\'s books}')->filterBy('price', 'between', 5, 12);

// Example 2.
$books = $dot->get('books.{children\'s books}')->filterBy('price', '>', 10);

// Example 3.
$books = $dot->get('books.{children\'s books}')->filterBy('price', 'in', [8.5, 15.49]);

	where:

	/*
 The signature of the `where` call can be:
 - where([property, comparisonOperator, ...value])
 - where(\Closure) :: The signature of the callable must be: `function ($value, $key)`

 Allowed comparison operators:
 - [=, ==, eq (equal)]
 - [===, i (identical)]
 - [!=, ne (not equal)]
 - [!==, ni (not identical)]
 - [<, lt (less than)]
 - [>, gr (greater than)]
 - [<=, lte (less than or equal to)]
 - [=>, gte (greater than or equal to)]
 - [in, contains]
 - [not-in, not-contains]
 - [between]
 - [not-between]
*/

// Example 1. (using the signature: [property, comparisonOperator, ...value])
$books = $dot->get('books.{children\'s books}')->where(['price', 'between', 5, 12]);

// Example 2. (using the signature: [property, comparisonOperator, ...value])
$books = $dot->get('books.{children\'s books}')->where(['price', '>', 10]);

// Example 3. (using the signature: [property, comparisonOperator, ...value])
$books = $dot->get('books.{children\'s books}')->where(['price', 'in', [8.5, 15.49]]);

// Example 4. (using the signature: \Closure)
$books = $dot->get('books.{children\'s books}')->where(function ($value, $key) {
 return $value['name'] === 'Harry Potter and the Order of the Phoenix';
});

	toArray:

Getting the internal raw array.

	// Example 1.
$dot->toArray();

// Example 2.
$dot->get('books.{sci-fi & fantasy}')->toArray();

	toJson:

Getting the internal raw array as JSON.

	// Example 1.
$dot->toJson();

// Example 2.
$dot->get('books.{sci-fi & fantasy}')->toJson();

	toFlat:

Flatten the internal array using the dot delimiter,
also the keys are wrapped inside {key} (1 x curly braces).

	$dot = DotArray::create(
 [
 'a' => [
 'b' => 'value',
],

 'b' => [
 1,
 2,
 3,
 'array' => [
 1,
 2,
 3,
]
],
]
);

$dot->toFlat();

/*
 The output will be an array:
 [
 '{a}.{b}' => 'value',
 '{b}.{0}' => 1,
 '{b}.{1}' => 2,
 '{b}.{2}' => 3,
 '{b}.{array}.{0}' => 1,
 '{b}.{array}.{1}' => 2,
 '{b}.{array}.{2}' => 3,
],
*/

Data Sample:

$dummyArray = [
 'books' => [
 'sci-fi & fantasy' =>
 [
 [
 'name' => 'Chronicles of Narnia Box Set',
 'price' => 24.55,
 'currency' => '$',
 'authors' =>
 [
 [
 'name' => 'C.S. Lewis'
],
],
],
 [
 'name' => 'A Game of Thrones / A Clash of Kings / A Storm of Swords / A Feast of Crows / A Dance with Dragons ',
 'price' => 37.97,
 'currency' => '$',
 'authors' =>
 [
 [
 'name' => 'George R. R. Martin'
],
],
],
],

 'children\'s books' =>
 [
 [
 'name' => 'Harry Potter and the Order of the Phoenix',
 'price' => 15.49,
 'currency' => '$',
 'authors' =>
 [
 [
 'name' => 'J. K. Rowling'
],
],
],
 [
 'name' => 'Harry Potter and the Cursed Child',
 'price' => 8.5,
 'currency' => '$',
 'authors' =>
 [
 [
 'name' => 'J. K. Rowling',
],
 [
 'name' => 'Jack Thorne'
],
],
],
],

],
];

Bugs and feature requests

Have a bug or a feature request?
Please first read the issue guidelines and search for existing and closed issues.
If your problem or idea is not addressed yet, please open a new issue [https://github.com/binary-cube/dot-array/issues/new].

Contributing guidelines

All contributions are more than welcomed.
Contributions may close an issue, fix a bug (reported or not reported), add new design blocks,
improve the existing code, add new feature, and so on.
In the interest of fostering an open and welcoming environment,
we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone,
regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality,
personal appearance, race, religion, or sexual identity and orientation.
Read the full Code of Conduct [https://github.com/binary-cube/dot-array/blob/master/code-of-conduct].

Versioning

Through the development of new versions, we’re going use the Semantic Versioning [https://semver.org].

Example: 1.0.0.

	Major release: increment the first digit and reset middle and last digits to zero. Introduces major changes that might break backward compatibility. E.g. 2.0.0

	Minor release: increment the middle digit and reset last digit to zero. It would fix bugs and also add new features without breaking backward compatibility. E.g. 1.1.0

	Patch release: increment the third digit. It would fix bugs and keep backward compatibility. E.g. 1.0.1

Authors

	Banciu N. Cristian Mihai

See also the list of contributors [https://github.com/binary-cube/dot-array/graphs/contributors] who participated in this project.

License

This project is licensed under the MIT License - see the LICENSE [https://github.com/binary-cube/dot-array/blob/master/LICENSE] file for details.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at [INSERT EMAIL ADDRESS]. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

 | Q | A
| ————- | —
| Is bugfix? | yes/no
| New feature? | yes/no
| Breaks BC? | yes/no
| Tests pass? | yes/no
| Fixed issues | comma-separated list of tickets # fixed by the PR, if any

name: Bug report
about: Create a report to help us improve
title: ‘’
labels: bug
assignees: ‘’

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:

	Go to ‘…’

	Execute ..

	See error

Expected behavior
A clear and concise description of what you expected to happen.

Additional context
Add any other context about the problem here.

name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

